Senin, 30 Januari 2012

Teori Dasar Listrik

Artikel kali ini lebih saya tujukan kepada orang awam yang ingin mengenal dan mempelajari teknik listrik ataupun bagi mereka yang sudah berkecimpung di dalam teknik elektro untuk sekedar mengingat kembali teori-teori dasar listrik.

1. Arus Listrik

adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.

Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.



Gambar 1. Arah arus listrik dan arah gerakan elektron.

“1 ampere arus adalah mengalirnya elektron sebanyak 624x10^16 (6,24151 × 10^18) atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor”
Formula arus listrik adalah:

I = Q/t (ampere)

Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik

2. Kuat Arus Listrik

Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.

Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.

Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:

Q = I x t
I = Q/t
t = Q/I

Dimana :
Q = Banyaknya muatan listrik dalam satuan coulomb
I = Kuat Arus dalam satuan Amper.
t = waktu dalam satuan detik.

“Kuat arus listrik biasa juga disebut dengan arus listrik”

“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”
3. Rapat Arus

Difinisi :
“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.



Gambar 2. Kerapatan arus listrik.

Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm²), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² (12A/1,5 mm²).

Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).



Tabel 1. Kemampuan Hantar Arus (KHA)

Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.

Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:

J = I/A
I = J x A
A = I/J

Dimana:
J = Rapat arus [ A/mm²]
I = Kuat arus [ Amp]
A = luas penampang kawat [ mm²]


4. Tahanan dan Daya Hantar Penghantar

Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.

Tahanan didefinisikan sebagai berikut :

“1 Ω (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C"

Daya hantar didefinisikan sebagai berikut:

“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.

Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:

R = 1/G
G = 1/R

Dimana :
R = Tahanan/resistansi [ Ω/ohm]
G = Daya hantar arus /konduktivitas [Y/mho]



Gambar 3. Resistansi Konduktor

Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.

“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ (rho), maka tahanan penghantar tersebut adalah” :

R = ρ x l/q

Dimana :
R = tahanan kawat [ Ω/ohm]
l = panjang kawat [meter/m] l
ρ = tahanan jenis kawat [Ωmm²/meter]
q = penampang kawat [mm²]

faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :
• panjang penghantar.
• luas penampang konduktor.
• jenis konduktor .
• temperatur.

"Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar"


5. potensial atau Tegangan

potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.

“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”

Formulasi beda potensial atau tegangan adalah:

V = W/Q [volt]

Dimana:
V = beda potensial atau tegangan, dalam volt
W = usaha, dalam newton-meter atau Nm atau joule
Q = muatan listrik, dalam coulomb


RANGKAIAN LISTRIK

Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :
1. Adanya sumber tegangan
2. Adanya alat penghubung
3. Adanya beban



Gambar 4. Rangkaian Listrik.

Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.

1. Cara Pemasangan Alat Ukur.
Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.

“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”
2. Hukum Ohm
Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :

I = V/R
V = R x I
R = V/I

Dimana;
I = arus listrik, ampere
V = tegangan, volt
R = resistansi atau tahanan, ohm

• Formula untuk menghtung Daya (P), dalam satuan watt adalah:
P = I x V
P = I x I x R
P = I² x R

3. HUKUM KIRCHOFF

Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (ΣI=0).



Gambar 5. loop arus“ KIRChOFF “

Jadi:
I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0
I1 + I4 = I2 + I3 + I5

semoga bermanfaat,

Artikel Terkait Lainnya:

Motor Listrik

Pada artikel “klasifikasi mesin listrik”, Motor listrik termasuk kedalam kategori mesin listrik dinamis dan merupakan sebuah perangkat elektromagnetik yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya, memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan, dll di industri dan digunakan juga pada peralatan listrik rumah tangga (seperti: mixer, bor listrik,kipas angin).

Anda dapat melihat animasi prinsip kerja motor DC ini di sini.

Motor listrik kadangkala disebut “kuda kerja” nya industri, sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri.

Mekanisme kerja untuk seluruh jenis motor listrik secara umum sama (Gambar 1), yaitu:
• Arus listrik dalam medan magnet akan memberikan gaya.
• Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan.
• Pasangan gaya menghasilkan tenaga putar/ torsi untuk memutar kumparan.
• Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan.

Dalam memahami sebuah motor listrik, penting untuk mengerti apa yang dimaksud dengan beban motor. Beban mengacu kepada keluaran tenaga putar/torsi sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan kedalam tiga kelompok:
Beban torsi konstan, adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya, namun torsi nya tidak bervariasi. Contoh beban dengan torsi konstan adalah conveyors, rotary kilns, dan pompa displacement konstan.
Beban dengan torsi variabel, adalah beban dengan torsi yang bervariasi dengan kecepatan operasi. Contoh beban dengan torsi variabel adalah pompa sentrifugal dan fan (torsi bervariasi sebagai kwadrat kecepatan).
Beban dengan energi konstan, adalah beban dengan permintaan torsi yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin.


Gambar 1. Prinsip Dasar Kerja Motor Listrik.

JENIS MOTOR LISTRIK

Bagian ini menjelaskan tentang dua jenis utama motor listrik: motor DC dan motor AC. Motor tersebut diklasifikasikan berdasarkan pasokan input, konstruksi, dan mekanisme operasi, dan dijelaskan lebih lanjut dalam bagan dibawah ini.


Gambar 2. Klasifikasi Motor Listrik.

1. Motor DC/Arus Searah
Motor DC/arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/direct-unidirectional. Motor DC digunakan pada penggunaan khusus dimana diperlukan penyalaan torsi yang tinggi atau percepatan yang tetap untuk kisaran kecepatan yang luas.
Gambar 3 memperlihatkan sebuah motor DC yang memiliki tiga komponen utama:
Kutub medan. Secara sederhada digambarkan bahwa interaksi dua kutub magnet akan menyebabkan perputaran pada motor DC. Motor DC memiliki kutub medan yang stasioner dan dinamo yang menggerakan bearing pada ruang diantara kutub medan. Motor DC sederhana memiliki dua kutub medan: kutub utara dan kutub selatan. Garis magnetik energi membesar melintasi bukaan diantara kutub-kutub dari utara ke selatan. Untuk motor yang lebih besar atau lebih komplek terdapat satu atau lebih elektromagnet. Elektromagnet menerima listrik dari sumber daya dari luar sebagai penyedia struktur medan.
Dinamo. Bila arus masuk menuju dinamo, maka arus ini akan menjadi elektromagnet. Dinamo yang berbentuk silinder, dihubungkan ke as penggerak untuk menggerakan beban. Untuk kasus motor DC yang kecil, dinamo berputar dalam medan magnet yang dibentuk oleh kutub-kutub, sampai kutub utara dan selatan magnet berganti lokasi. Jika hal ini terjadi, arusnya berbalik untuk merubah kutub-kutub utara dan selatan dinamo.
Kommutator. Komponen ini terutama ditemukan dalam motor DC. Kegunaannya adalah untuk membalikan arah arus listrik dalam dinamo. Kommutator juga membantu dalam transmisi arus antara dinamo dan sumber daya.


Gambar 3. Motor DC.

Keuntungan utama motor DC adalah kecepatannya mudah dikendalikan dan tidak mempengaruhi kualitas pasokan daya. Motor DC ini dapat dikendalikan dengan mengatur:
Tegangan dinamo – meningkatkan tegangan dinamo akan meningkatkan kecepatan.
Arus medan – menurunkan arus medan akan meningkatkan kecepatan.

Motor DC tersedia dalam banyak ukuran, namun penggunaannya pada umumnya dibatasi untuk beberapa penggunaan berkecepatan rendah, penggunaan daya rendah hingga sedang, seperti peralatan mesin dan rolling mills, sebab sering terjadi masalah dengan perubahan arah arus listrik mekanis pada ukuran yang lebih besar. Juga, motor tersebut dibatasi hanya untuk penggunaan di area yang bersih dan tidak berbahaya sebab resiko percikan api pada sikatnya. Motor DC juga relatif mahal dibanding motor AC.

Hubungan antara kecepatan, flux medan dan tegangan dinamo ditunjukkan dalam persamaan berikut:

Gaya elektromagnetik: E = KΦN

Torsi: T = KΦIa

Dimana:
E =gaya elektromagnetik yang dikembangkan pada terminal dinamo (volt)
Φ = flux medan yang berbanding lurus dengan arus medan
N = kecepatan dalam RPM (putaran per menit)
T = torsi electromagnetik
Ia = arus dinamo
K = konstanta persamaan

Jenis-Jenis Motor DC/Arus Searah

a. Motor DC sumber daya terpisah/ Separately Excited, Jika arus medan dipasok dari sumber terpisah maka disebut motor DC sumber daya terpisah/separately excited.

b. Motor DC sumber daya sendiri/ Self Excited: motor shunt. Pada motor shunt, gulungan medan (medan shunt) disambungkan secara paralel dengan gulungan dinamo (A) seperti diperlihatkan dalam gambar 4. Oleh karena itu total arus dalam jalur merupakan penjumlahan arus medan dan arus dinamo.

Gambar 4. Karakteristik Motor DC Shunt.

Berikut tentang kecepatan motor shunt (E.T.E., 1997):
• Kecepatan pada prakteknya konstan tidak tergantung pada beban (hingga torsi tertentu setelah kecepatannya berkurang, lihat Gambar 4) dan oleh karena itu cocok untuk penggunaan komersial dengan beban awal yang rendah, seperti peralatan mesin.
• Kecepatan dapat dikendalikan dengan cara memasang tahanan dalam susunan seri dengan dinamo (kecepatan berkurang) atau dengan memasang tahanan pada arus medan (kecepatan bertambah).

c. Motor DC daya sendiri: motor seri. Dalam motor seri, gulungan medan (medan shunt) dihubungkan secara seri dengan gulungan dinamo (A) seperti ditunjukkan dalam gambar 5. Oleh karena itu, arus medan sama dengan arus dinamo.

Berikut tentang kecepatan motor seri (Rodwell International Corporation, 1997; L.M. Photonics Ltd, 2002):
• Kecepatan dibatasi pada 5000 RPM.
• Harus dihindarkan menjalankan motor seri tanpa ada beban sebab motor akan mempercepat tanpa terkendali.
Motor-motor seri cocok untuk penggunaan yang memerlukan torque penyalaan awal yang tinggi, seperti derek dan alat pengangkat hoist (lihat Gambar 5).

Gambar 5. Karakteristik Motor DC Seri.

d. Motor DC Kompon/Gabungan.
Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dinamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini. Contoh, penggabungan 40-50% menjadikan motor ini cocok untuk alat pengangkat hoist dan derek, sedangkan motor kompon yang standar (12%) tidak cocok (myElectrical, 2005).

Gambar 6. Karakteristik Motor DC Kompon.

2. Motor AC/Arus Bolak-Balik

Motor AC/arus bolak-balik menggunakan arus listrik yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Motor listrik AC memiliki dua buah bagian dasar listrik: "stator" dan "rotor" seperti ditunjukkan dalam Gambar 7.

Stator merupakan komponen listrik statis. Rotor merupakan komponen listrik berputar untuk memutar as motor. Keuntungan utama motor DC terhadap motor AC adalah bahwa kecepatan motor AC lebih sulit dikendalikan. Untuk mengatasi kerugian ini, motor AC dapat dilengkapi dengan penggerak frekwensi variabel untuk meningkatkan kendali kecepatan sekaligus menurunkan dayanya. Motor induksi merupakan motor yang paling populer di industri karena kehandalannya dan lebih mudah perawatannya. Motor induksi AC cukup murah (harganya setengah atau kurang dari harga sebuah motor DC) dan juga memberikan rasio daya terhadap berat yang cukup tinggi (sekitar dua kali motor DC).

Jenis-Jenis Motor AC/Arus Bolak-Balik

a. Motor sinkron. Motor sinkron adalah motor AC yang bekerja pada kecepatan tetap pada sistim frekwensi tertentu. Motor ini memerlukan arus searah (DC) untuk pembangkitan daya dan memiliki torque awal yang rendah, dan oleh karena itu motor sinkron cocok untuk penggunaan awal dengan beban rendah, seperti kompresor udara, perubahan frekwensi dan generator motor. Motor sinkron mampu untuk memperbaiki faktor daya sistim, sehingga sering digunakan pada sistim yang menggunakan banyak listrik.

Komponen utama motor sinkron adalah (Gambar 7):
Rotor. Perbedaan utama antara motor sinkron dengan motor induksi adalah bahwa rotor mesin sinkron berjalan pada kecepatan yang sama dengan perputaran medan magnet. Hal ini memungkinkan sebab medan magnit rotor tidak lagi terinduksi. Rotor memiliki magnet permanen atau arus DC-excited, yang dipaksa untuk mengunci pada posisi tertentu bila dihadapkan dengan medan magnet lainnya.
Stator. Stator menghasilkan medan magnet berputar yang sebanding dengan frekwensi yang dipasok.

Motor ini berputar pada kecepatan sinkron, yang diberikan oleh persamaan berikut (Parekh, 2003):

Ns = 120 f / P

Dimana:
f = frekwensi dari pasokan frekwensi
P= jumlah kutub

Gambar 7. Motor Sinkron.

b. Motor induksi. Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah dan mudah didapat, dan dapat langsung disambungkan ke sumber daya AC.

Komponen Motor induksi memiliki dua komponen listrik utama (Gambar 8):
Rotor. Motor induksi menggunakan dua jenis rotor:
- Rotor kandang tupai terdiri dari batang penghantar tebal yang dilekatkan dalam petak-petak slots paralel. Batang-batang tersebut diberi hubungan pendek pada kedua ujungnya dengan alat cincin hubungan pendek.
- Lingkaran rotor yang memiliki gulungan tiga fase, lapisan ganda dan terdistribusi. Dibuat melingkar sebanyak kutub stator. Tiga fase digulungi kawat pada bagian dalamnya dan ujung yang lainnya dihubungkan ke cincin kecil yang dipasang pada batang as dengan sikat yang menempel padanya.
Stator. Stator dibuat dari sejumlah stampings dengan slots untuk membawa gulungan tiga fase. Gulungan ini dilingkarkan untuk sejumlah kutub yang tertentu. Gulungan diberi spasi geometri sebesar 120 derajat .

Klasifikasi motor induksi

Motor induksi dapat diklasifikasikan menjadi dua kelompok utama (Parekh, 2003):
Motor induksi satu fase. Motor ini hanya memiliki satu gulungan stator, beroperasi dengan pasokan daya satu fase, memiliki sebuah rotor kandang tupai, dan memerlukan sebuah alat untuk menghidupkan motornya. Sejauh ini motor ini merupakan jenis motor yang paling umum digunakan dalam peralatan rumah tangga, seperti kipas angin, mesin cuci dan pengering pakaian, dan untuk penggunaan hingga 3 sampai 4 Hp.
Motor induksi tiga fase. Medan magnet yang berputar dihasilkan oleh pasokan tiga fase yang seimbang. Motor tersebut memiliki kemampuan daya yang tinggi, dapat memiliki kandang tupai atau gulungan rotor (walaupun 90% memiliki rotor kandang tupai); dan penyalaan sendiri. Diperkirakan bahwa sekitar 70% motor di industri menggunakan jenis ini, sebagai contoh, pompa, kompresor, belt conveyor, jaringan listrik , dan grinder. Tersedia dalam ukuran 1/3 hingga ratusan Hp.

Gambar 8. Motor Induksi.

Kecepatan motor induksi

Motor induksi bekerja sebagai berikut, Listrik dipasok ke stator yang akan menghasilkan medan magnet. Medan magnet ini bergerak dengan kecepatan sinkron disekitar rotor. Arus rotor menghasilkan medan magnet kedua, yang berusaha untuk melawan medan magnet stator, yang menyebabkan rotor berputar. Walaupun begitu, didalam prakteknya motor tidak pernah bekerja pada kecepatan sinkron namun pada “kecepatan dasar” yang lebih rendah. Terjadinya perbedaan antara dua kecepatan tersebut disebabkan adanya “slip/geseran” yang meningkat dengan meningkatnya beban. Slip hanya terjadi pada motor induksi. Untuk menghindari slip dapat dipasang sebuah cincin geser/ slip ring, dan motor tersebut dinamakan “motor cincin geser/slip ring motor”.

Persamaan berikut dapat digunakan untuk menghitung persentase slip/geseran(Parekh, 2003):

% Slip = (Ns – Nb)/Ns x 100

Dimana:
Ns = kecepatan sinkron dalam RPM
Nb = kecepatan dasar dalam RPM

Hubungan antara beban, kecepatan dan torsi


Gambar 9. Grafik Torsi vs Kecepatan Motor Induksi.

Gambar 9 menunjukan grafik torsi vs kecepatan motor induksi AC tiga fase dengan arus yang sudah ditetapkan. Bila motor (Parekh, 2003):
• Mulai menyala ternyata terdapat arus nyala awal yang tinggi dan torsi yang rendah (“pull-up torque”).
• Mencapai 80% kecepatan penuh, torsi berada pada tingkat tertinggi (“pull-out torque”) dan arus mulai turun.
• Pada kecepatan penuh, atau kecepatan sinkron, arus torsi dan stator turun ke nol.

Mengenal peralatan instalasi listrik rumah tinggal

Anda pasti sudah mengenal peralatan listrik yang terpasang dirumah anda seperti sakelar, stop kontak, steker, sekering dan lainnya. Dan untuk anda yang awam dengan dunia listrik, artikel kali ini akan mengajak anda untuk mengenal fungsi dan jenis peralatan listrik tersebut secara umum.

Pengenalan peralatan listrik instalasi listrik rumah tinggal ini akan dimulai dengan Bargainser.

BARGAINSER

Bargainser merupakan alat yang berfungsi sebagai pembatas daya listrik yang masuk ke rumah tinggal, sekaligus juga berfungsi sebagai pengukur jumlah daya listrik yang digunakan rumah tinggal tersebut (dalam satuan kWh). Ada berbagai batasan daya yang dikeluarkan oleh PLN untuk konsumsi rumah tinggal, yaitu 220 VA, 450 VA, 900 VA, 1.300 VA, dan 2.200 VA.
bargainser
Pada bargainser terdapat tiga bagian utama, yaitu:
- MCB atau Miniature Circuit Breaker, berfungsi untuk memutuskan aliran daya listrik secara otomatis jika daya yang dihantarkan melebihi nilai batasannya. MCB ini bersifat on/off dan dapat juga berfungsi sebagai sakelar utama dalam rumah. Jika MCB bargainser ini dalam kondisi off, maka seluruh aliran listrik dalam rumah pun terhenti. Sakelar ini biasanya dimatikan pada saat akan dilakukan perbaikan instalasi listrik dirumah.

- Meter listrik atau kWh meter, alat ini berfungsi untuk mengukur besaran daya yang digunakan oleh rumah tinggal tersebut dalam satuan kWh (kilowatt hour). Pada bargainser, meter listrik berwujud deretan angka secara analog ataupun digital yang akan berubah sesuai penggunaan daya listrik.

- Spin Control, merupakan alat kontrol penggunaan daya dalam rumah tinggal dan akan selalu berputar selama ada daya listrik yang digunakan. Perputaran spin control ini akan semakain cepat jika daya listrik yang digunakan semakin besar, dan akan melambat jika daya listrik yang digunakan berkurang/sedikit.

Pada kanal output Bargainser biasanya terdapat 3 kabel, yaitu kabel fasa, kabel netral dan kabel ground yang dihubungkan ketanah. Listrik dari PLN harus dihubungkan dengan bargainser terlebih dahulu sebelum masuk ke instalasi listrik rumah tinggal.

PENGAMAN LISTRIK
Instalasi listrik rumah tinggal pun membutuhkan pengaman yang berfungsi untuk memutuskan rangkaian listrik apabila terjadi gangguan pada instalasi listrik rumah tinggal tersebut, seperti gangguan hubung singkat atau short circuit atau korsleting.

Terdapat dua jenis pengaman listrik pada instalasi listrik rumah tinggal, yaitu:
- Pengaman lebur biasa atau biasa disebut sekering, alat pengaman ini bekerja memutuskan rangkaian listrik dengan cara meleburkan kawat yang ditempatkan pada suatu tabung apabila kawat tersebut dialairi arus listrik dengan ukuran tertentu.

- Pengaman listrik thermis, biasa disebut MCB dan merupakan alat pengaman yang akan memutuskan rangkaian listrik berdasarkan panas .


SAKELAR

Sakelar atau switch merupakan komponen instalasi listrik yang berfungsi untuk menyambung atau memutus aliran listrik pada suatu pemghantar.
Berdasarkan besarnya tegangan, sakelar dapat dibedakan menjadi:
- sakelar bertegangan rendah.
- Sakelar tegangan menengah.
- Sakelar tegangan tinggi serta sangat tinggi.


Sedangkan berdasarkan tempat dan pemasangannya, sakelar dapat dibedakan menjadi :
- Sakelar in-bow, sakelar yang ditanam didalam tembok.
- Sakelar out-bow, sakelar yang dipasang pada permukaan tembok.

Jenis sakelar berikutnya dapat dibedakan berdasarkan fungsinya, yaitu:
- Sakelar on-off, merupakan sakelar yang bekerja menghubungkan arus listrik jika tombolnya ditekan pada posisi on. Untuk memutuskan hubungan arus listrik, tombol sakelar harus ditekan pada posisi off. Sakelar jenis ini biasanya digunakan untuk sakelar lampu.

- Sakelar push-on, merupakan sakelar yang menghubungkan arus listrik jika tombolnya ditekan pada posisi on dan akan secara otomatis memutus arus listrik, ketika tombolnya dilepas dan kembali ke posisi off dengan sendirinya. Biasanya sakelar jenis ini digunakan untuk sakelar bel rumah.

Berdasarkan jenis per-unitnya, sakelar dapat dibedakan menjadi dua jenis, yaitu:
- Sakelar tunggal, merupakan sakelar yang hanya mempunyai satu buah kanal input yang terhubung dengan sumber listrik, serta kanal output yang terhubung dengan beban listrik/alat listrik yang digunakan.

- Sakelar majemuk, merupakan sakelar yang memiliki satu buah kanal input yang terhubung dengan sumber listrik, namun memiliki banyak kanal output yang terhubung dengan beberapa beban/alat listrik yang digunakan. Jumlah kanal output tergantung dari jumlah tombol pada sakelar tersebut.


STOP KONTAK

Stop kontak, sebagian mengatakan outlet, merupakan komponen listrik yang berfungsi sebagi muara hubungan antara alat listrik dengan aliran listrik. Agar alat listrik terhubung dengan stop kontak, maka diperlukan kabel dan steker atau colokan yang nantinya akan ditancapkan pada stop kontak.

Berdasarkan bentuk serta fungsinya, stop kontak dibedakan menjadi dua macam, yaitu:
- Stop kontak kecil, merupakan stop kontak dengan dua lubang (kanal) yang berfungsi untuk menyalurkan listrik pada daya rendah ke alat-alat listrik melalui steker yang juga berjenis kecil.

- Stop kontak besar, juga nerupakan stop kontak dengan dua kanal AC yang dilengkapi dengan lempeng logam pada sisi atas dan bawah kanal AC yang berfungsi sebagai ground.sakelar jenis ini biasanya digunakan untuk daya yang lebih besar.


Sedangkan berdasarkan tempat pemasangannya. Dikenal dua jenis stop kontak, yaitu:
- Stop kontak in bow, merupakan stop kontak yang dipasang didalam tembok.
- Stop kontak out bow, yang dipasang diluar tembok atau hanya diletakkan dipermukaan tembok pada saat berfungsi sebagai stop kontak portable.


STEKER

Steker atau Staker atau yang kadang sering disebut colokan listrik, karena memang berupa dua buah colokan berbahan logam dan merupakan alat listrik yang yang berfungsi untuk menghubungkan alat listrik dengan aliran listrik, ditancapkan pada kanal stop kontak sehingga alat listrik tersebut dapat digunakan.


Berdasarkan fungsi dan bentuknya, steker juga memliki dua jenis, yaitu:
- Steker kecil, merupakan steker yang digunakan untuk menyambung alat-alat listrik berdaya rendah, misalnya lampu atau radio kecil, dengan sumber listrik atau stop kontak.

- Steker besar, merupakan steker yang digunakan untuk alat-alat listrik yang berdaya besar, misalnya lemari es, microwave, mesin cuci dan lainnya, dengan sumber listrik atau stop kontak. Steker jenis ini dilengkapi dengan lempeng logam untuk kanal ground yang berfungsi sebagai pengaman.

Untuk mengetahui lebih jauh tentang PLUG dan SOCKET ini, silahkan membaca artikelnya di sini.
KABEL

Kabel listrik merupakan komponen listrik yang berfungsi untuk menghantarkan energi listrik ke sumber-sumber beban listrik atau alat-alat listrik.

Untuk instalasi listrik rumah tinggal, kabel yang digunakan biasanya berjenis sebagai berikut:
- NYA, kabel jenis ini merupakan kabel listrik yang berisolasi PVC dan berintikan/berisi satu kawat. Jenisnya adalah kabel udara atau tidak ditanam dalam tanah. Kabel listrik ini biasanya berwarna merah, hitam, kuning atau biru. Isolasi kawat penghantarnya hanya satu lapis, sehingga tidak cukup kuat terhadap gesekan, gencetan/tekanan atau gigitan binatang seperti tikus. Karena kelemahan pada isolasinya tersebut maka dalam pemasangannya diperlukan pelapis luar dengan menggunakan pipa conduit dari PVC atau besi.

- NYM, merupakan kabel listrik yang berisolasi PVC dan berintikan kawat lebih dari satu, ada yang 2, 3 atau 4. Jenis kabel udara dengan warna isolasi luar biasanya putih dan warna isolasi bagian dalam beragam, karena isolasi yang rangkap inilah maka kabel listrik NYM ini relative lebih kuat terhadap gesekan atau gencetan/tekanan.

- NYY, kabel listrik jenis ini merupakan kabel berisolasi PVC, berintikan 2, 3 atau 4 dengan warna isolasi luarnya hitam. Jenis kabel tanah, sehingga tahan terhadap air dan gencetan atau tekanan.

- NYMHYO, kabel jenis ini merupakan kabel serabut dengan dua buah inti yang terdiri dari dua warna. Kabel jenis ini biasa digunakan pada loudspeaker, sound sistem, lampu-lampu berdaya kecil sampai sedang.

Demikian sekilas pengenalan peralatan-perlatan listrik untuk instalasi listrik rumah tinggal, keterangan fungsi, bentuk/konstruksi dan cara kerja dari masing-masing alat merupakan penjelasan secara umum.

Semoga bermanfaat, dunia-listrik.blogspot.com

MARI BERDISKUSI BERSAMA DI FORUM DUNIA LISTRIK

Sumber artikel & gambar milik: buku “Kiat Hemat Bayar Listrik” – Author: Gatut Susanta & Sasi Agustoni - ditulis oleh HaGe dari google books

Karakteristik Beberapa Jenis Bahan Penghantar Listrik

Seperti telah kita ketahui, bahwa untuk pelaksanaan penyaluran energi listrik dapat dilakukan dengan dua cara, yaitu berupa saluran udara dan kabel tanah. Pada saluran Udara, terutama hantaran udara telanjang biasanya banyak menggunakan kawat penghantar yang terdiri atas: kawat tembaga telanjang (BCC, singkatan dari Bare Cooper Cable), Aluminium telanjang (AAC, singkatan dari All Aluminium Cable), Campuran yang berbasis aluminium (Al-Mg-Si), Aluminium berinti baja (ACSR, singkatan dari Aluminium Cable Steel Reinforced) dan Kawat baja yang berisi lapisan tembaga (Cooper Weld).

Sedangkan pada saluran kabel tanah, biasanya banyak menggunakan kabel dengan penghantar jenis tembaga dan aluminium, perkembangan yang sangat dominan pada saluran kabel tanah adalah dari sisi bahan isolasinya, dimana pada saat awal banyak menggunakan isolasi berbahan kertas dengan perlindungan mekanikal berupa timah hitam, kemudian menggunakan minyak ( jenis kabel ini dinamakan GPLK atau Gewapend Papier Lood Kabel yang merupakan standar belanda dan NKBA atau Normal Kabel mit Bleimantel Aussenumheullung yang merupakan standar jerman, dan jenis bahan isolasi yang terkini adalah isolasi buatan berupa PVC (Polyvinyl Chloride) dan XLPE (Cross-Linked Polyethylene). Jenis bahan isolasi PVC dan XLPE pada saat ini telah berkembang pesat dan merupakan bahan isolasi yang andal.

Di waktu yang lalu, bahan yang banyak digunakan untuk saluran listrik adalah jenis tembaga (Cu). Namun karena harga tembaga yang tinggi dan tidak stabil bahkan cenderung naik, aluminium mulai dilirik dan dimanfaatkan sebagai bahan kawat saluran listrik, baik saluran udara maupun saluran kabel tanah. Lagipula, kawat tembaga sering dicuri karena bahannya dapat dimanfaatkan untuk pembuatan berbagai produk lain.

Suatu ikhtisar akan disampaikan dibawah ini mengenai berbagai jenis logam atau campurannya yang dipakai untuk kawat saluran listrik, yaitu:

• Tembaga elektrolitik, yang harus memenuhi beberapa syarat normalisasi, baik mengenai daya hantar listrik maupun mengenai sifat-sifat mekanikal.

• Brons, yang memiliki kekuatan mekanikal yang lebih besar, namun memiliki daya hantar listrik yang rendah. Sering dipakai untuk kawat pentanahan.

• Aluminium, yang memiliki kelebihan karena materialnya ringan sekali. Kekurangannya adalah daya hantar listrik agak rendah dan kawatnya sedikit kaku. Harganya sangat kompetitif. Karenanya merupakan saingan berat bagi tembaga, dan dapat dikatakan bahwa secara praktis kini mulai lebih banyak digunakan untuk instalasi-instalasi listrik arus kuat yang baru dari pada menggunakan tembaga.

• Aluminium berinti baja, yang biasanya dikenal sebagai ACSR (Aluminium Cable Steel Reinforced), suatu kabel penghantar aluminium yang dilengkapi dengan unit kawat baja pada inti kabelnya. Kawat baja itu diperlukan guna meningkatkan kekuatan tarik kabel. ACSR ini banyak digunakan untuk kawat saluran hantar udara.

• Aldrey, jenis kawat campuran antara aluminium dengan silicium (konsentrasinya sekitar 0,4 % – 0,7 %), Magnesium (konsentrasinya antara 0,3 % - 0,35 %) dan ferum (konsentrasinya antara 0,2 % - 0,3 %). Kawat ini memiliki kekuatan mekanikal yang sangat besar, namun daya hantar listriknya agak rendah.

• Cooper-weld, suatu kawat baja yang disekelilingnya diberi lapisan tembaga.

• Baja, bahan yang paling banyak digunakan sebagai kawat petir dan juga sebagai kawat pentanahan.

Berdasarkan ikhtisar diatas, dapat dikatakan bahwa bahan yang terpenting untuk saluran penghantar listrik adalah tembaga dan aluminium, sehingga kedua bahan tersebut banyak digunakan sebagai kawat pengantar listrik, baik saluran hantar udara maupun kabel tanah.

Untuk pembahasan lebih detail mengenai bahan penghantar listrik, dapat dibaca pada artikel berikut:

“Ilmu Bahan Listrik Dasar” , "Konduktor" dan “Electrical Power Cable Engineering”
atau kunjungi label artikel: "Ilmu Bahan Listrik"

Semoga bermanfaat,
Sumber: “Distribusi dan Utilisasi Tenaga Listrik” – Abdul Kadir.

Dasar Elektronika Daya - bagian 1

Dasar Elektronika Daya - bagian 1

Pada Sistem Tenaga Listrik terdapat penggunaan komponen elektronika yang umumnya dipakai dalam rangkaian pengaturan motor-motor listrik. Komponen-komponen elektronika yang dipergunakan pada sistem tenaga listrik pada prinsipnya harus mampu menghasilkan daya yang besar atau mampu menahan disipasi daya yang besar.

Elektronika daya meliputi switching, pengontrolan dan pengubah (konversi) blok-blok yang besar dari daya listrik dengan menggunakan sarana peralatan semikonduktor. Dengan demikian elektronika daya secara garis besar terbagi menjadi 2 (dua) bagian yaitu :

1. Rangkaian Daya
2. Rangkaian kontrol

Pada gambar berikut menunjukkan hubungan antara kedua rangkaian diatas yang terintegrasi menjadi satu, dimana keduanya banyak memanfaatkan peralatan semikonduktor.



Rangkaian daya terdiri dari komponen Dioda, Thyristor dan Transistor Daya. Sedangkan rangkaian kontrol terdiri atas Dioda, Transistor dan rangkaian terpadu (Integrated Circuit / IC).

Dengan menggunakan peralatan-peralatan yang serupa keandalan dan kompatibilitas dari perlengkapan (sistem) akan dapat diperbaiki. Elektronika daya merupakan bagian yang penting dalam industri-industri, yaitu dalam pengontrolan daya pada sistem, proses elektronika dan lain-lain.

I. DIODA

Dioda merupakan penyatuan dari lapisan P dan N sebagaimana gambar struktur dan simbol lapisan.



Syarat dioda dalam keadaan ON adalah Vak positip sedangkan untuk OFF adalah Vak negatif.



Karateristik tersebut menggambarkan hubungan antara arus dioda (IR dan IF) agar Vak dalam kondisi menahan arus (OFF) maupun dalam keadaan mengalir (ON). Dalam keadaan OFF, Vak = Vr = negatif, maka dioda menahan arus namun terdapat arus bocor Ir yang kecil.

Dalam keadaan ON, Vak = Vf = positif, dioda mengalirkan arus namun terdapat tegangan jatuh pada dioda = ∆ Vf, dan jika ∆ Vf ini makin besar untuk arus dioda yang makin tinggi, berarti rugi konduksi If * ∆ Vf naik. Terlihat pula pada karateristik dioda diatas bahwa bila Vr terlalu tinggi dioda akan rusak.

Karateristik Switching

Karateristik ini menggambarkan sifat kerja dioda dalam perpindahan keadaan ON ke OFF dan sebaliknya.



Dioda akan segera melalukan arus jika Vr telah mencapai lebih dari Vf minimum dioda kondusif dan pada saat OFF terjadi kelambatan dari dioda untuk kembali mempunyai kemampuan memblokir tegangan reverse. Dari gambar diatas tgerlihat adanya arus balik sesaat pada dioda, dimana arus balik ini terjadi pada saat peralihan keadaan dioda dari kondisi ON ke kondisi membloking tegangan reverse.

Dengan adanya sifat arus balik, maka diperoleh dua jenis penggolongan dioda yaitu :
1. Dioda Cepat, yaitu dioda dengan kemapuan segera mampu membloking
tegangan reverse yang cepat, orde 200 ns terhitung sejak arus forward dioda
sama dengan 0 (nol).

2. Dioda Lambat, yaitu untuk hal yang sama dioda memerlukan waktu lebih lama,
Q32 > Qs1.

Terminologi karateristik dioda

Trr : Reverse Recovery Time, waktu yang diperlukan dioda untuk bersifat membloking tegangan forward.
Tjr : Waktu yang diperlukan oleh Juction P-N untuk bersifat membloking.
Tbr : Waktu yang diperlukan daerah perbatasan Junction untuk membentuk zone bloking.
Qs : Jumlah muatan yang mengalir dalam arah reverse selama perpindahan status dioda ON ke OFF.

Dioda jenis lambat banyak digunakan pada rangkaian konverter dengan komutasi lambat/natural, seperti rangkaian penyearah. Sedangkan Dioda jenis Cepat dipergunakan pada konverter statis dengan komutasi sendiri seperti misalnya pada DC Chopper, konverter komutasi sendiri dll.

Kemampuan Tegangan
Dioda bersifat memblokir tegangan reverse, ternyata mampu menahan tegangan tersebut tergantung pada karateristik tegangan itu sendiri.



VRWM = Puncak tegangan kerja normal.
VRRM = Puncak tegangan lebih yang terjadi secara periodik.
VRSM = Puncak tegangan lebih tidak periodik.

Kemampuan Arus Dioda

Adanya tegangan jatuh konduksi ∆ Vf menyebabkan rugi daya pada dioda yang keluar dalam bentuk panas. Temperatur junction maksimum terletak antara 110°C - 125°C. Panas yang melebihi dari temperatur ini akan menyebabkan dioda rusak. Temperatur maksimum ini dapat dicapai oleh bermacam-macam pembebanan arus terhadap dioda.



If (AV) : Arus rata-rata maksimum yang diijinkan setiap harga arus rata-rata akan menghasilkan suatu harga temperatur akhir pada junction dioda. Batas If (AV) ini juga tergantung pada temperatur ruang dan jenis sistem pendinginan (Heat-sink).

If (RMS) : Harga effektif maksimum arus dioda. Harga rata-rata yang di bawah If (∆V) maksimum, belum menjamin keamanan operasi dioda terutama arus beban dioda dengan form factor yang tinggi. ( Rate Mean Square )

If (RM) : Harga puncak arus lebih periodik yang diijinkan.

If (SM) : Harga puncak arus lebih non periodik yang diijinkan

T : Batas integral pembebanan arus dimana dioda masih mampu mengalaminya.

Besaran ini berlaku untuk ½ cycles atau 1 ms dan merupakan pedoman dalam pemilihan pengaman arus.

Contoh data Fast Dioda Type MF 70
Maximum repetitive peak reverse voltage, Vdrm = 1200 Volt.
Mean forward current, If (AV) = 70 A
RMS forward current, Irms max = 110 A
Non repetitive forward current, If (ms) = 700 A
Forward V-Drop, Vfm=V, pada Ifm = 210 A
Peak reverse current, Irm = 5 mA
Reverse recovery time, trr = 200 ns
Stored, charger, Qrr = T µc (Qs)
Thermal resistance, Rth-jc = 0,37°C/w

Pada artikel lanjutan akan dibahas mengenai: SCR (Silicon Controlled Rectifier), TRIAC (Trioda Alternating Current Switch), DIAC (Bilateral Trigger Dioda) dan UJT (Uni-Juntion Transistor).

Semoga bermanfaat,

Terima kasih kepada Kontributor: Ir. A. Muid Fabanyo, MMT (Elektronika Daya-Elektro S1)